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Abstract

Specialization is observable in many complex adaptive systems and is thought 
by many to be a fundamental mechanism for achieving optimal efficiency 
within organizations operating within complex adaptive systems. This chapter 
presents a survey and critique of collective behavior systems designed using 
biologically inspired principles. Specifically, we are interested in collective 
behavior systems where specialization emerges as a result of system dynamics 
and where emergent specialization is used as a problem solver or means to 
increase task performance. The chapter presents an argument for developing 
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design methodologies and principles that facilitate emergent specialization 
in collective behavior systems. Open problems of current research as well as 
future research directions are highlighted for the purpose of encouraging the 
development of such emergent specialization design methodologies.

Introduction

Specialization is observable in many complex adaptive systems1 and is thought 
by many to be a fundamental mechanism for achieving optimal efficiency 
within certain complex adaptive systems. In complex ecological communi-
ties, specializations have evolved over time as a means of diversifying the 
community in order to adapt to the environment (Seligmann, 1999). Over 
the course of evolutionary time, specialization in biological communities 
has assumed both morphological (Wenseleers, Ratnieks, & Billen, 2003) 
and behavioral forms (Bonabeau, Theraulaz, & Deneubourg, 1996). For ex-
ample, morphologically specialized castes have emerged in certain termite 
colonies (Noirot & Pasteels, 1987), and honeybees dynamically adapt their 
foraging behavior for pollen, nectar, and water as a function of individual 
preference and colony demand (Calderone & Page, 1988). The consequence 
of such specializations is that labor is efficiently divided between special-
ized castes2 and individuals for the benefit of accomplishing group tasks. In 
such a sense, specialization can be viewed as an adaptive mechanism in a 
complex adaptive system.
Many artificial complex adaptive systems that exhibit collective behavior have 
used design principles, which draw their inspiration from examples of spe-
cialization in nature. Such examples include complex ecological communities 
such as social insect colonies (Bonabeau et al., 1996; Bonabeau, Sobkowski, 
Theraulaz, & Deneubourg, 1997; Calderone et al., 1988; Noirot et al., 1987; 
Seligmann, 1999; Wenseleers et al., 2003) biological neural networks (Baev, 
1997), multi-cellular organisms (Hawthorne, 2001), economies of a nation, 
companies, corporations, and other business organizations (Abdel-Rahman, 
2001; Ng & Yang, 1997; Resnick, 1997). Such biologically inspired design 
principles are especially prevalent in multi-robot (Potter, Meeden, & Schultz, 
2001) swarm intelligence (Bonabeau, Dorigo, & Theraulaz, 1998) and arti-
ficial life systems (Nishimura & Takashi, 1997) where it is highly desirable 
to replicate the success of biological collective behavior systems.
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Suppositions of Specialization

Given empirical evidence offered by research in both biological collective 
behavior systems, and biologically inspired artificial collective behavior 
systems3, two key observations can be stated.

• Specialization that assumes either behavioral or morphological forms 
is often present in biological systems that exhibit collective behavior.

• In biological systems that exhibit collective behavior, specialization 
is beneficial in that it increases the efficiency of the system, or allows 
collective behavior tasks to be solved that could not otherwise be solved 
by individuals within the system. 

Given these observations, one can formulate the assumption that specialization 
is beneficial in biological inspired artificial complex adaptive systems that are 
designed to solve certain types of collective behavior tasks. Examples of such 
types of collective behavior tasks are presented in section Collective Behavior 
Tasks and Specialization. In order for this assumption to be proved, this chapter 
proposes the need to develop emergent behavior design methodologies4. Such 
methodologies would dictate design and engineering principles for creating 
an artificial complex adaptive system capable of solving collective behavior 
tasks that require or benefit from specialization. Ideally, such methodologies 
would result in the production of artificial complex adaptive systems that 
yield emergent yet desired forms of specialization. As in biological systems, 
this emergent specialization could then be harnessed and used by the system 
for the benefit of either increasing task performance, or solving certain col-
lective behavior tasks, that could not otherwise be solved.

Chapter Goal and Motivation: Specialization as a Problem 
Solver

The chapter’s scope is a survey and critique of collective behavior systems 
designed using biologically inspired design principles that use emergent 
specialization to solve collective behavior tasks. Such design principles in-
clude self-organization, learning, and evolution (Brooks, 1990). This chapter 
presents an argument for utilizing emergent behavioral specialization as a 
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problem solver in biologically inspired artificial complex adaptive systems. 
Such utilization would be advantageous given the numerous real world ap-
plications where specialization is beneficial. Examples of such applications 
are presented in the section Collective Behavior Tasks and Specialization. 
This chapter’s motivation is similar to that cited for the organic computing 
research endeavor (Müller & Sick, 2006). Organic computing has recently 
achieved some success in investigating the notion of defining and measur-
ing concepts such as emergence and self-organization in large distributed 
complex adaptive systems. The key idea is to utilize emergent phenomena 
for the benefit of solving tasks in organic computing systems. An organic 
computing system is a technical system, which adapts dynamically to the 
current conditions of its environment. It is self-organizing, self-configuring, 
self-repairing, self-protecting, self-explaining, and context-aware (Müller et 
al., 2006). Initial research in this area displays great promise, and includes 
exploiting emergent functionality at the hardware level of visual micropro-
cessors for image recognition tasks (Komann & Fey, 2007), self-organizing, 
and self-stabilizing role assignment in sensor and actuator networks (Weis, 
Parzyjegla, Jaeger, & Mühl, 2006), and self-organization of job scheduling 
and distribution of jobs over nodes in a network (Trumler, Klaus, & Ungerer, 
2006).

Chapter Scope: Behavioral Specialization

Another important issue is which type of specialization5 should be instituted 
for the benefit of a collective behavior system. We have elected to only survey 
research literature concerned with behavioral specialization. The decision to 
adopt this focus was based on the discovery that with relatively few exceptions 
(section: Types of Specialization) the majority of research concerning the use 
of emergent specialization for improving task performance is restricted to 
simulated systems. This is so, given the obvious engineering challenges and 
inherent complexity of dynamically creating morphologically specialized ro-
bots and computer components, that represent effective solutions to emerging 
challenges in a physical task environment (Parker & Nathan, 2006; Pfeifer, 
Iida, & Gomez, 2006; Watson, Ficici, & Pollack, 1999b). Figure 1 presents the 
scope of the chapter within the dimensions of emergent versus non-emergent 
phenomena and behavioral versus morphological specialization.
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Types of Specialization

Specialization in collective behavior systems has been studied from many 
different perspectives (Bongard, 2000; Bryant & Miikkulainen, 2003; Blumen-
thal & Parker, 2004b; Campos, Theraulaz, Bonabeau, & Deneubourg, 2001; 
Haynes & Sen, 1996b; Nolfi et al., 2003b; Stone & Veloso, 2002; Whiteson, 
Kohl, Miikkulainen, & Stone, 2003), and is thus often defined in accordance 
with the goals of researchers conducting the study. Within collective behav-
ior literature, specialization is either studied as an emergent property of the 
system, or is explicitly pre-programmed into the systems components. With 
notable exceptions such as Funes, Orme, and Bonabeau (2003), there are few 
examples of research that successfully specifies, a priori, what exactly the 
behavior of system components should be, in order to produce a specifically 
desired, yet emergent collective behavior.

Figure 1. Types of specialization in biologically inspired collective behavior 
systems. The top left-hand side quadrant defines the scope of this chapter. 
Specifically, adaptive systems that use heterogeneous or homogenous design 
approaches with the aim of deriving emergent behavioral specialization for 
solving collective behavior tasks. See section: Types of Specialization for 
details.
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Non-Emergent Specialization

Non-emergent specialization is that which is explicitly pre-specified to be 
apart of the design of system components and global behavior of a system. 
Such approaches are either static, or utilize learning algorithms so as to 
ascertain which type of behavioral specialization, selected from a given set, 
is most appropriate for solving a given task. Such approaches are useful for 
solving collective behavior tasks that require specialization, where the degree 
of specialization required can be sufficiently described a priori (Arkin & 
Balch, 1999; Balch, 2002a, 2002b).

Emergent Specialization

Emergent specialization is that which emerges from the interaction of system 
components in response to a dynamic task that requires varying degrees, or 
different types of specialization, in order to effectively accomplish. Such 
approaches have become popular in collective behavior task domains where 
one does not know, a priori, the degree of specialization required to optimally 
solve the given task (Gautrais, Theraulaz, Deneubourg, & Anderson, 2002; 
Luke & Spector, 1996; Murciano & Millan, 1997a; Murciano, Millan, & 
Zamora, 1997b; Potter et al., 2001; Stanley, Bryant, & Miikkulainen, 2005b; 
Theraulaz, Bonabeau, & Deneubourg, 1998b; Waibel, Floreano, Magnenat, 
& Keller, 2006). The section Heterogeneous vs. Homogenous Design of 
Emergent Specialization elaborates upon such emergent specialization design 
approaches.

Morphological vs. Behavioral Specialization

It is possible to further categorize specialization into two distinct classes: 
morphological (Martinoli, Zhang, Prakash, Antonsson, & Olney, 2002; Zhang, 
Martinoli, & Antonsson, 2003) and behavioral (Bonabeau et al., 1997; Li, 
Martinoli, & Mostafa, 2002).
The term morphological specialization is applicable to situated and em-
bodied agents, operating in simulated or physical task environments, with 
embodiment (sensors and actuators) structured so as to yield an advantage 
in accomplishing the task (Watson et al., 1998a, 1999b, 2002). Examples of 
morphological specialization include the evolution of optimal arrangements 
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of sensors and actuators in the design of simulated automobiles (Martinoli et 
al., 2002; Zhang et al., 2003), evolution of agent morphologies and controllers 
for various forms of motion in simulated environments (Sims, 2004), evolu-
tion of physical electric circuits for control (Thompson, Harvey, & Husbands, 
1996), and evolving robot morphology for accomplishing different forms of 
physical motion (Lipson & Pollack, 2000).
The term behavioral specialization is applicable to agents with behaviors that 
are advantageous for accomplishing specific types of tasks (Balch, 2002a, 
2002b; Nolfi & Floreano, 2000; Nolfi & Parisi, 1997). Examples of behav-
ioral specialization include the use of machine learning methods that activate 
certain behaviors with a particular frequency as a response to dynamically 
arising tasks (Gautrais et al., 2002).

Collective Behavior Methods for Specialization

There is some agreement among researchers as to the methods for special-
ization that are appropriate for particular collective behavior tasks. Figure 2 
illustrates a categorization of such methods, which are briefly detailed in the 
following. The categories illustrated in Figure 2 are by no means exhaustive, 
but rather several examples that have recently received particular research 
attention.

Figure 2. Collective behavior methods of specialization. See section: Col-
lective Behavior Methods for Specialization for details.
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Division of Labor Methods

The use of behavioral threshold and division of labor methods have been 
investigated within the context of ant-based (Deneubourg, Goss, Pasteels, 
Fresneau, & Lachaud, 1987) and resource allocation (Bonabeau et al., 1997) 
methods. Such methods typically utilize feedback signals given to agents of 
the same caste (Kreiger & Billeter, 2000) in order to encourage the emer-
gence of specialization for a specific task. Many variations of these methods 
exist (Bonabeau & Theraulaz, 1999; Bonabeau et al., 1996, 1997, 1998; 
Deneubourg et al., 1987; Robson & Traniello, 1999; Theraulaz, Gervet, & 
Semenoff, 1991; Theraulaz, Goss, Gervet, & Deneubourg, 1991), including 
those that use evolutionary algorithms (Tarapore, Floreano, & Keller, 2006; 
Waibel et al., 2006), and reinforcement learning models (Murciano et al., 
1997a, Murciano et al., 1997b) in order to derive threshold values. The goal 
of such models is typically to optimize global task performance. Such meth-
ods are appealing as their evolutionary dynamics and emergent properties 
can usually be described with a mathematical representation and the results 
of such models are thus typically amenable to a mathematical analysis (Wu, 
Di, & Yang, 2003).

Mathematical, Economic, and Game Theory Methods

Linear, non-linear, and dynamic methods based in mathematical, economic, 
and game theory (Axelrod, 1984; Solow & Szmerekovsky, 2004) have many 
applications for resource assignment problems in business. For example, the 
maximum matching algorithm developed by Edmonds (1965) was designed 
to determine the maximum number of people that can be assigned to tasks 
in such a way that no person is assigned to more than one task. Thus, it is 
assumed that each person specializes in performing at most one task. Such 
methods are advantageous as results can be subject to a formal analysis. 
However, they are limited by their abstract nature, and assume that the task 
domain can be mathematically or otherwise formally represented.

Cooperative Co-Evolution Methods

Cooperative co-evolution methods have been implemented both in the context 
of modified genetic algorithms, for example, Cooperative Co-evolutionary 
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Genetic Algorithms (Potter & DeJong, 2000), and in the context of neuro-
evolution methods, for example, Enforced Sub-Populations (ESP) (Gomez, 
1997). In both cases, the genotype space is decomposed into a set of sub-
populations, where each generation, the evolutionary process selects the best 
performing genotype components from each sub-population so as to construct 
a complete genotype as a solution. Decomposition of the genotype space 
into sub-populations, genotype construction from multiple sub-populations, 
and genotype to phenotype mapping depends upon the approach used. For 
example, the ESP method encodes separate neurons as genotype components 
to be distributed between sub-populations, where the composition of neurons 
encodes a complete neural network. Advantages of such methods include 
their versatility, and applicability to a broad range of complex, continuous, 
and noisy task domains. Also, the representation of the genotype space as a 
set of sub-populations provides a natural representation for many collective 
behavior tasks, and often effectuates the derivation of specialized phenotypes. 
A key disadvantage of such approaches is slow derivation of viable solu-
tions in complex task domains due to inherently large search spaces. Also, 
the genotype representations that produce desired results can typically not 
be easily interpreted.

Reinforcement Learning Methods

There exists a certain class of reinforcement learning methods that provide 
periodic feedback signals to agent groups attempting to accomplish a collec-
tive behavior task (Sutton & Barto, 1998). A reinforcement signal is either 
local or global. Local reinforcement signals are calculated by, and given to 
a single agent, or a caste, upon task accomplishment. Global reinforcement 
signals are calculated by and given to the entire agent group at the end of 
a reinforcement learning trial (Li, Martinoli, & Yaser, 2004). The main 
advantage of reinforcement learning approaches is that agents are able to 
effectively operate in complex and noisy environments, with incomplete 
information. However, approaches that utilize only a global reinforcement 
signal, do not typically effectuate specialization in the group, even if task 
performance could be increased with specialized agents (Li et al., 2002, 2004). 
Approaches that utilize local reinforcement signals have been demonstrated 
as being appropriate for deriving specialized agents (Li et al., 2004), however 
such approaches suffer from the credit assignment problem (Grefenstette, 
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1995; Sutton et al., 1998), which potentially leads to sub-optimal collective 
behavior solutions.

Heterogeneous vs. Homogenous Design of 
Emergent Specialization

In collective behavior research, approaches to designing emergent special-
ization usually adopt either homogeneous or heterogeneous methods for 
designing system components. Homogeneous approaches utilize a single 
agent behavior for every agent in a group of agents. Agent behavior may be 
encoded as one genotype representation, or in some cases simply defined 
by a given set of parameters, which are copied for each agent in the group 
(Quinn, Smith, Mayley, & Husbands, 2003). Heterogeneous approaches utilize 
different behaviors for each agent in a group of agents. The set of different 
behaviors is sometimes encoded as different populations of genotypes, as in 
the case of cooperative co-evolutionary genetic algorithms (Parker, 2000). 
Alternatively, different agent behaviors may simply be represented as dif-
ferent sets of parameters (Campos et al., 2001).
Designing emergent specialization has been studied via specifying homogene-
ity vs. heterogeneity within both the genotypes and phenotypes of individual 
agents as well as entire agent groups. Specialization is often closely associated 
with, and sometimes synonymous with, heterogeneity in collective behavior 
systems (Balch, 1998; Potter et al., 2001). Heterogeneity can be hardwired 
or plastic, and may assume either behavioral (Bryant et al., 2003; Noirot et 
al., 1987; Whiteson et al., 2003), or morphological (O’Riain, Jarvis, Alex-
ander, Buffenstein, & Peeters, 2000; Schultz & Bugajska, 2000; Zhang et 
al., 2003) forms. Plastic heterogeneity is when a group adapts its degree of 
heterogeneity as a function of environment and task constraints, where as, 
hardwired heterogeneity is when the degree of heterogeneity in the group 
remains static (Li et al., 2002). 
Certain researchers have attempted to outline generalized guidelines as 
when to use either homogeneous or heterogeneous design approaches. For 
example, Balch (1998) suggested that collective behavior task domains 
where all individuals are able to perform the task, such as collective gather-
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ing, are particularly suited for homogeneous design. Whilst, task domains 
that explicitly require complementary roles, such as RoboCup soccer, are 
more suitable for heterogeneous approaches. However, such guidelines, as 
with studies of specialization, are usually defined according to the goals and 
perspectives of the researcher. Hence, one can readily find examples of when 
homogeneity and heterogeneity have been used in a manner incongruent to 
any given set of design principles or guidelines.

Homogeneous Approaches

In homogeneous approaches, specialization is typically studied at the group 
level since emergent specialization depends upon the local interactions of 
cloned behaviors. At the genotype level, the key advantage of a homogeneous 
approach is that the search space size is kept minimal since an algorithm need 
only optimize a single behavior. At the phenotype level, homogeneous groups 
are potentially more adaptive than heterogeneous groups at coping with the 
loss of group members. Also, homogenous groups typically have greater 
flexibility in coordinating behaviors so as to produce an effective collective 
behavior (Stone & Veloso, 1999). The key disadvantage of such approaches 
is that system homogeneity, either at the genotype or phenotype level, does 
not facilitate specialization, so it is likely that such collective behavior sys-
tems will converge to a non-specialized solution, even if specialization is 
advantageous in the given task domain.

Heterogeneous Approaches

Heterogeneous approaches typically study emergent specialization at either 
the local (agent) or global (entire group) level. The key advantage of hetero-
geneity is that it encourages and facilitates emergent specialization, both at 
the individual and group level. The key disadvantage of heterogeneous ap-
proaches is that the search space is usually (for complex tasks) prohibitively 
large comparative to homogeneous approaches, since many different agent 
behaviors need to be optimized or otherwise adapted for task accomplish-
ment.
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Collective Behavior Tasks and Specialization

In the design of collective behavior systems, it remains an open research 
question as to which task domains are most appropriately solved using spe-
cialization. However, there is some agreement amongst researchers that if the 
task can be naturally decomposed into a set of complementary sub-tasks then 
specialization is often beneficial for increasing collective task performance 
(Arkin, 1998; Arkin et al., 1999; Balch, 2002a; Balch, 2002b). The following 
list enumerates several categories of such collective behavior task domains. 
Each of these task domain categories mandates some degree of collective 
behavior, where specialization is beneficial for improving task performance. 
In subsequent sections, specific research examples selected from each of 
these categories are briefly examined.

• Collective Gathering (Bonabeau et al., 1998; Perez-Uribe, Floreano, 
& Keller, 2003).

• Collective Construction (Murciano et al., 1997a, 1997b; Theraulaz & 
Bonabeau, 1995).

• Collective Resource Distribution and Allocation (Bonabeau et al., 
1996, 1997; Campos et al., 2001; Theraulaz et al., 1998a, 1998b).

• Multi-Agent Computer Games (Bryant et al., 2003), (Stanley & Miik-
kulainen, 2002; Stanley et al., 2005b).

• RoboCup Soccer (Luke, Farris, Jackson, & Hendler, 1998; Luke et al., 
1996; Stone et al., 1999.

• Predator-Prey and Collective Herding Behaviors (Blumenthal et al., 
2004b), (Blumenthal & Parker, 2004a, 2004c; Luke et al., 1996; Potter 
et al., 2001).

• Moving in Formation and Cooperative Transportation Tasks (Kube 
& Bonabeau, 1999; Nolfi et al., 2003b; Quinn et al., 2003).

Collective Gathering

Collective gathering is a task domain characterized by the social insect 
metaphor. That is, collective gathering tasks seek to emulate the success and 
efficiency of social insects in gathering resources. Collective gathering tasks 
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have been studied in the context of both physical multi-robot systems (Kreiger 
et al., 2000; Mataric, 1997) and simulated multi-robot systems (Ijspeert, 
Martinoli, Billard, & Gambardella, 2001), as well as more abstract artificial 
life simulations (Bongard, 2000; Deneubourg, Theraulaz, & Beckers, 1991; 
Perez-Uribe et al., 2003). The collective gathering task domain requires that 
a group of agents search for, collect, and transport resources in the environ-
ment from their initial locations to some particular part of the environment. 
Such gathering tasks typically require that the group of agents allocate their 
labor efforts to particular sub-tasks so as to derive a collective behavior that 
maximizes the quantity of resources gathered6. Collective gathering tasks 
are typically viewed as optimization problems and have been traditionally 
studied with mathematical or otherwise analytical methods (Bonabeau et al., 
1996; Gautrais et al., 2002; Theraulaz et al., 1998a).

Learning Behavioral Specialization for Stick Pulling

The research of Li et al. (2004) addressed the important issue of attempting to 
specify the concepts of heterogeneity and specialization in a formal definition, 
so as emergent heterogeneity and specialization7 would be measurable within 
the larger context of collective behavior and distributed systems research. In 
a case study that compared centralized and distributed learning methods, the 
authors qualitatively measured the diversity and specialization of a simulated 
multi-robot system given a stick-pulling task that mandated specialized and 
cooperative behavior. One research goal was to investigate the impact of 
diversity, in the form of heterogeneity in behaviors, upon emergent special-
ization and in turn the impact of specialization on task performance.
In all experiments, the authors presented a learning method that effectively 
operated within a multi-robot simulator, where specialization emerged as a 
function of task constraints and environmental conditions regardless of whether 
local or global reinforcement signals were used. The authors’ explanation for 
this result was that if behavioral diversity (heterogeneity) is beneficial to task 
performance, then the learning method facilitates emergent specialization as 
a means of taking advantage of this behavioral diversity. 
The key criticism of this research is the dependency between emergent 
specialization and the learning method used, and consequently the methods 
applicability to more generalized optimization tasks. Results supported 
a hypothesis that if behavioral diversity in a group was beneficial to task 
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performance, then specialization was likely to emerge and increase ac-
cordingly with behavioral diversity and task performance.  However, these 
results largely depended upon the type of learning method, the model of 
the task environment, robot controller parameters that defined membership 
to a caste, and the task related parameters that the learning method sought 
to optimize. Thus, the degree to which emergent specialization depended 
upon the underlying adaptation process remains an open question. Also, the 
system designer needed to select task environment parameters for the learn-
ing method. This cast doubt upon the possibility of applying the learning 
method to more complex and dynamic task environments, where pertinent 
task environment parameters that the learning method would require in order 
to encourage diversity, specialization, and increased task performance, could 
not be identified a priori.
Furthermore, the number of castes composing a group was determined by the 
system designer and not by the adaptive process. Experiments that analyzed 
emergent caste formation would be necessary in order to effectively ascer-
tain the relationship between heterogeneity, specialization, and collective 
behavior task performance. An adaptive process where a particular number 
of castes emerge in response to simulation environment and task constraints 
would make such a process applicable to complex task environments where 
task challenges dynamically arise.

Collective Construction

Collective Construction is a task domain characterized by the social insect 
metaphor. That is, collective construction tasks seek to emulate the success 
and efficiency of social insects in gathering resources. Collective construction 
tasks have mainly been studied in the context of artificial life simulations 
(Bonabeau, Theraulaz, Arpin, & Sardet, 1994; Murciano et al., 1997a, 1997b; 
Theraulaz & Bonabeau, 1995. Collective construction is typically viewed as 
an extension of the collective gathering task, in that it requires the agents to 
construct a particular structure, with gathered resources, at a home area of 
the environment. Specialization is typically required for building complex 
structures from many different types of component resources.
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Reinforcement Learning for Specialization in Collective Construction

Murciano et al. (1997a) and Murciano et al. (1997b) applied reinforcement 
learning (RL) methods to a group of homogeneous agents operating in a 
discrete simulation environment. A collective gathering task mandated that 
individual agents derive specialized behavior in order to then derive an op-
timal collective behavior.
The authors used a RL method that independently modified action selection 
parameters within the controller of each agent. The RL method used either 
global or local RL signals so as to effectuate the learning of specialized 
behaviors. Behavioral specialization took the form of an agent learning to 
consistently select one action from a set of possible actions. The global RL 
signal measured group performance, and the local RL signal measured indi-
vidual performance. The global RL signal was given at the end of a RL trial, 
where the signal was equal for all agents in the group. The local RL signal 
was given to individual agents, where the signal was calculated in terms of 
the agents own successes or failures. Murciano et al. (1997b) conducted 
experiments that tested the impact of local versus global RL signals upon 
the learning of specialized behaviors in a homogenous group of agents with 
no communication. The goal of these experiments was for agents to special-
ize via learning to gather specific object types so as to construct complex 
objects. Thus, when agents interacted an effective collective gathering and 
construction behavior emerged. Group task performance was measured as 
the number of complex objects assembled in a given RL trial. In the same 
experimental setup (Murciano et al., 1997a) conducted experiments that 
utilized only global RL signals for the purpose of facilitating emergent spe-
cialization within a homogeneous group of communicating agents. The task 
of individual agents and the group was to maximize the number of objects 
gathered over the course of a RL trial. The goal of experiments was for agents 
to specialize to different behaviors so as communication would facilitate the 
collective gathering of an optimal number of objects.
One criticism of the research of Murciano et al., (1997b), and Murciano et 
al. (1997a) derives from the use of RL signals in effectuating specialized 
behavior. Experimental results indicated that a global RL signal success-
fully motivated emergent specialization, given the assumption that all agents 
contribute equally to the task, and the signal was translated so as it could be 
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meaningfully interpreted by each agent in a homogenous group. This casts 
doubt upon the applicability of global RL signals to heterogeneous groups. 
Likewise, the applicability of local RL signals was not tested in complex task 
domains that provided more realistic simulations of multi-robot systems. 
The possibility of applying the RL method to facilitate specialization in 
continuous simulation and physical task domains seems unlikely given the 
sparse reinforcement limitations of global RL signals and the noisy nature 
of local RL signals (Sutton et al., 1998) that inhibit learning. One aim of 
the research was to demonstrate that specialization emerges as a function 
of task constraints on the environment and agent group, irrespective of the 
type of reinforcement signal used. Achieving scalability in the learning of 
behavioral specialization is especially prevalent for tasks that require an in-
creasing degree of heterogeneity, and complexity in collective behavior, as a 
response to dynamically emerging task challenges. However, the scalability 
of the RL method as a mechanism for encouraging behavioral specializa-
tion remains unclear since only two group sizes (10 and 30 agents), and a 
discrete environment of one size (54 x 54 grid cells) was tested. Also, the 
impact of more dynamic versions of the simulation environment upon the 
RL algorithm, were not tested. That is, only one redistribution of objects, 
during given RL trials, was tested.
Finally, the RL method assumed that the given task environment could be 
abstracted to the form of a multi-objective function which could be opti-
mized. In this case the function was represented as a set of agent affinities 
that determined an agent’s propensity to adopt particular behavioral roles. 
This severely limited the applicability of the RL method to more general and 
complex task environments.

Collective Resource Distribution and Allocation

In a series of research endeavors inspired by social insects (Bonabeau et al., 
1996, 1997; Campos et al., 2001; Theraulaz et al., 1998a, 1998b), studied 
emergent specialization using response threshold methods in simulations 
of homogenous agent groups that were implemented within the context of 
mathematical frameworks.
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Division of Labor for Dynamic Task Allocation

Theraulaz et al. (1998a) extended a previous formalization for the regulation 
of division of labor (Bonabeau et al., 1996) in simulated social insect colonies 
so as to include a reinforcement learning process. A formal variable response 
threshold method was implemented for purpose of facilitating emergent spe-
cialization in the form of division of labor. The authors highlighted similarities 
between their results and observations made within biological social systems 
where specialist workers were dynamically allocated based upon sub-task 
demand within a collective behavior task (O’Donnell, 1998).

Division of Labor for Dynamic Flow Shop Scheduling

Campos et al. (2001) introduced a division of labor method and applied it 
as a method for assigning resources within a dynamic flow shop scheduling 
task. The task entailed assigning trucks to paint booths in a factory, where 
trucks moved along an assembly line at a given pace. The color of a truck 
was predetermined by customer order. Three minutes was needed to paint 
a truck, but an additional three minutes was required if the color of a paint 
booth was to be changed for the truck. There was also a cost associated with 
paint changeover for a booth. A division of labor method was applied to 
minimize the number of such changeovers. Such paint fit-and-finish tasks 
are traditional bottleneck problems that can significantly reduce production 
throughput and thus require optimal solutions (Morley & Ekberg, 1998).

Division of Labor as a Function of Group Size

Gautrais et al., (2002) implemented a variable response threshold method 
to demonstrate that increasing agent group size and demand for tasks gener-
ated specialized agents. As with previous research (Bonabeau et al., 1996; 
Theraulaz et al., 1998a, 1998b), the response threshold method provided each 
agent in a group with an internal threshold for activating a particular behavior. 
Each agent’s response threshold was influenced by the level of demand for a 
particular task, and agents allocated themselves so as to satisfy demand for 
these tasks. The authors’ main conclusion was that their response threshold 
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method demonstrated emergent specialization to be function of group size 
in the given resource allocation task, where group sizes exceeding a criti-
cal threshold value contained specialized agents, and group sizes below the 
critical threshold value contained only unspecialized agents. These findings 
were corroborated by similar findings in empirical theoretical biology stud-
ies (Robson et al., 1999).

Division of Labor Methods for Collective Resource Distribution and 
Allocation: Comments

Such response threshold methods represent a very simple, yet powerful, self-
regulating feedback system that assigns the appropriate numbers of agents 
to different tasks. It is obvious that the study of such biologically inspired 
formalizations of specialization are worthy of future research attention given 
their applicability to a broad range of optimization tasks including dynamic 
scheduling and resource allocation. The methods of Bonabeau et al. (1997), 
Campos et al. (2001), Gautrais et al. (2002), and Theraulaz et al. (1998a) were 
prevalent in that they eloquently demonstrated how behavioral specialization 
emerged as a result of self-regulating task assignment and accomplishment, 
for which there exists a large amount of corroborating biological literature and 
empirical evidence (Chen, 1937a, 1937b; Deneubourg et al., 1987; O’Donnell, 
1998; Robson et al., 1999; Theraulaz, Gervet, & Semenoff, 1991).
The main appeal of this set of research examples was their successful modeling 
of specialized behavior in the form a set of equations. These equations were 
successfully applied as a method for regulating the specialization of agents 
to specific tasks, in order to optimally accomplish a collective behavior task. 
However, in many cases the adaptive nature of response threshold regulation 
was never tested for more than one group or environment size, and more 
than two tasks. Also, the removal of specialized agents to test the adapta-
tion process was limited to two agents. This was an important aspect of the 
adaptive nature of response thresholds, since if task allocation becomes too 
dynamic, or oscillatory, it is conceivable that the advantages of specialization 
could be lost as an agent spends all of its time switching between tasks, and 
consequently never dedicates enough time to accomplish a given task.
In each case, a simple set of experiments illustrated the importance and 
necessity of utilizing models of biological social behavior as a step towards 
understanding such social behavior, and then applying the underlying 
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techniques, namely response thresholds, as a means of designing problem 
solving methods for optimization tasks. The main advantage of division of 
labor methods is their eloquence and simplicity of formal specification. Also, 
such methods yield results that are amenable to a mathematical or formal 
analysis. However, such methods are also limited to task domains that can 
be completely represented via the mechanics of a mathematical method. 
This makes the contributions of such methods limited to optimization tasks 
that can be formally represented, or to supporting empirical results evident 
in related biological literature.

Multi-Agent Computer Games

The application of biologically inspired methods to multi-agent computer 
games (Fogel, Hays, & Johnson, 2004; Laird & vanLent, 2000) has recently 
achieved particular success and gained popularity. For example, there has been 
particular research interest in the creation of adaptive interactive multi-agent 
first-person shooter games (Cole, Louis, & Miles, 2004; Hong & Cho, 2004; 
Stanley et al., 2005b), as well as strategy games (Bryant et al., 2003; Revello 
& McCartney, 2002; Yannakakis, Levine, & Hallam, 2004) using artificial 
evolution and learning as design methods for agent behavior. However, the 
study of specialized game playing behaviors, in teams of agents, has received 
relatively little research attention. Specialization is beneficial since it is often 
necessary for teams of agents to formulate collective behavior solutions in 
order to effectively challenge a human player, where an increasingly difficult 
level of agent performance is expected as game time progresses.

Legion-I: Neuro-Evolution for Adaptive Teams

Bryant et al. (2003) utilized the Enforced Sub-Populations (ESP) neuro-
evolution method (Gomez, 1997) for the derivation of collective behavior 
in a multi-agent strategy game called Legion-I. The research hypothesis was 
that a team of homogeneous agents, where agents were capable of adopting 
different behavioral roles would be advantageous in terms of task perfor-
mance, comparative to heterogeneous groups, composed of agents with static 
complementary behaviors. These experiments highlighted the effectiveness 
of the ESP method for deriving a dynamic form of emergent behavioral 
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specialization motivated by division of labor. Results supported the hypoth-
esis that for the Legion game, a homogenous team, where individuals could 
dynamically switch between specialized behaviors was effective. However, 
the analysis of emergent specialization was only at a behavioral level, so one 
could not readily ascertain the relationship between behavioral specialization 
and the evolved genotypes responsible for such behaviors. This would make 
an exploration of the mechanisms responsible for emergent specialization 
resulting from division of labor problematic. The task environment used a 
discrete simulation environment popular in multi-agent strategy games, but 
this was not sufficiently complex or dynamic in order to adequately test and 
support suppositions stating the advantages of behavioral specialization in 
homogenous teams. Also, the task performance of homogenous groups was 
not compared with heterogeneous groups. Valuable insight into the capabilities 
of homogenous versus heterogeneous agent groups for facilitating emergent 
specialization, could be gained by a comparison between groups represented 
by one neural controller, versus each agent within a group being represented 
by a different neural controller.

NERO: Neuro-Evolution of Augmenting Topologies

Stanley et al. (2005b), Stanley, Bryant, Karpov, and Miikkulainen, (2006), 
and Stanley, Bryant, and Miikkulainen (2005a) introduced a neuro-evolution 
method for the online evolution of neural controllers that operated in the 
context of an interactive multi-agent computer game called Neuro-Evolving 
Robotic Operatives (NERO). NERO is a first-person perspective shooter 
game, where a human player competes with teams of agents, and agents 
compete against each other. The rtNEAT neuro-evolution method was used 
for evolving increasing complex agent neural controllers using a process 
known as complexification. This was an extension of the Neuro-Evolution of 
Augmenting Topologies (NEAT) method (Stanley et al., 2002) that operated 
using online evolution. The authors demonstrated the effectiveness of the 
rtNEAT method for dynamically adapting agent controllers within a team 
playing against other agent teams or a human player in real time. Agent 
game playing behavior became increasingly sophisticated over successive 
generations as a result of changing neural network topological structure as 
well as evolving network connection weights. As an extension of the NEAT 
method, rtNEAT used online evolution to yield impressive results in terms of 
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facilitating effectively competitive collective behaviors in the game playing 
time of NERO. The NEAT and rtNEAT methods successfully implemented 
a speciated representation of the genotype space, and a distance measure 
for genotype similarities, that provided a clear method for relating observed 
behaviors with a given set of genotypes.
However, the specialized controllers evolved were primarily determined by 
a training phase of NERO. Agent teams evolved specializations that were 
suitable for a given environment. Given that simulation environments were 
the same for both training and a subsequent battle phase, it remains unclear 
how suitable evolved teams would be for generalized collective behavior 
games. The true potential and beneficial nature of the rtNEAT method for 
evolving specialized behaviors in an online evolutionary process, for pur-
pose of increasing team task performance, was not tested in other simulated 
multi-robot task domains. In realistic collective behavior tasks where the 
environment is dynamic and its structure and layout are not known a priori, 
training phases would only be partially effective since controllers trained in 
a simulation of the environment would simply be representing a best guess 
behavior. Currently, it remains unclear if rtNEAT could be successfully applied 
to collective behaviors tasks where there is a significant disparity between 
a training simulation and a subsequent actual simulation (called the battle 
phase in NERO). Such an issue is especially prevalent if online evolution of 
controllers is to eventually be applied for accomplishing multi-robot tasks, 
with time and energy constraints, in dynamic and complex physical task 
environments.

RoboCup Soccer

A distinct relation to multi-agent game research is RoboCup (Kitano & Asada, 
2000). RoboCup is a research field dedicated to the design and development 
of multi-robot systems for the purpose of playing a robotic form of soccer. It 
is widely recognized as a specific test bed for machine learning algorithms, 
and engineering challenges (Noda & Stone, 2001). The very nature of the 
RoboCup game demands the existence of several types of behavioral spe-
cialization, in the form of different player roles. Such behaviors must be 
complementary and able to interact in such a way so as to produce a desired 
global behavior. That is, a team strategy that wins the game in a competitive 
scenario. Several researchers have focused on machine learning, evolutionary 
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computation, and neuro-evolution methods that derive task accomplishing 
collective behaviors within groups of two or three soccer agents. Although, 
specialized behaviors of individual soccer agents was either specified a priori 
or was derived in simplistic game scenarios (Hsu & Gustafson, 2001, 2002; 
Luke et al., 1998; Matsubara, Noda, & Hiraki, 1996; Stone et al., 1998, 
1998b, 2002; Whiteson et al., 2003. Each of these research examples has 
been critiqued elsewhere (Nitschke, 2005).

Pursuit-Evasion

Pursuit-evasion is a collective behavior task that is commonly used within 
artificial life research to test both non-adaptive (typically game theoretic) and 
adaptive (typically learning and evolution) methods for agent controller design. 
The task requires that multiple pursuer agents derive a collective behavior 
for the capture of one or more evading agents (Haynes & Sen, 1996a). The 
investigation of emergent specialization remains a relatively unexplored area 
of research in the pursuit-evasion domain (Luke et al., 1996), the collective 
herding variation (Potter et al., 2001), as well as more traditional predator-
prey systems (Nishimura et al., 1997).

Evolving Pursuit-Evasion Behavior with Hexapod Robots

Blumenthal et al. (2004a, 2004b, 2004c) expanded previous work via com-
bining a punctuated anytime learning (Blumenthal & Parker, 2006; Parker, 
2000) method with an evolutionary algorithm within a co-evolution scenario. 
Although not the main research focus, this work addressed the issue of using 
morphological differences in agents in order to effectuate the derivation of 
behavioral specialization, and consequently a collective prey-capture behavior. 
The co-evolution scenario operated within a simulated multi-robot system of 
five hexapod robots where the goal was to derive an effective prey-capture 
behavior within four predator robots, and a predator-evasion behavior within 
one prey robot. This study effectively illustrated the derivation of prey-cap-
ture behavior based upon specialized behaviors that utilized differences in 
simulated hexapod robot morphology. Such as, the least maneuverable robot 
adopting a passive defensive position, whilst the fastest and most maneuver-
able robots adopted proactive pursuit behaviors. 
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However, the morphological differences between the robots were simple, 
leading one to speculate that a higher degree of complexity in specialized 
behavior may have emerged if differences in sensors and controller structure 
were included along with a greater disparity in actuator capabilities. Also, the 
prey was always initially placed at the center of the simulation environment, 
which made it easier for predators to form an effective prey capture behavior, 
and influenced the types of prey-capture behaviors that could emerge. Though 
not explicitly stated as a being a goal of this research, a valuable contribution 
to this research, would have been a methodological study that described a 
mapping or set of principles linking types of sensor and actuator capabilities 
to resulting forms of emergent behavioral specialization. Such a study could 
potentially form the basis of multi-robot system design methodologies that 
use evolution and learning mechanisms that capitalize on morphology in 
order to produce desired collective behaviors for solving a given task.

Evolving Herding Behavior in a Multi-Robot System

The research of Potter et al., (2001) investigated the evolution of homogeneous 
vs. heterogeneous controllers within a simulated multi-robot system that 
was given a collective herding task. A group of Nomad 200s were simulated 
within the TeamBots simulator (Balch, 1998). The research hypothesis was 
that as task difficulty increased, heterogeneity and specialization become 
essential for successful task accomplishment. Heterogeneity was defined 
as the number of different behaviors one robot could select from, as well 
as the number of behaviors in the group. This hypothesis was tested with 
experiments that introduced a predator into the environment. The goal was 
to encourage the emergence of specialized defensive behaviors in addition to 
herding behaviors. Experiments effectively illustrated that emergent behav-
ioral specialization, for the benefit of collective behavior task performance, 
could be facilitated in a heterogeneous team of agents. Furthermore, results 
supported a hypothesis that constructing a collective behavior task such that 
multiple behaviors are required, increases the need for heterogeneity, and in 
turn specialization. However, the inducement of emergent specialization via 
increasing the number of behaviors required, and not simply task complexity, 
was only investigated within a single case study. 
The key criticism lies in the comparison of homogenous and heterogeneous 
groups for deriving collective herding behaviors.  Particularly, it is unclear 
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why the authors opted to use only two genotype populations to represent a 
group of three shepherds in the heterogeneous design approach. The impact of 
homogeneity and heterogeneity on emergent specialization was not validated 
with larger groups of shepherds. Also, only one increment in the complexity 
of the task environment was tested. That is, the addition of the predator to the 
collective herding task. Complete validation of the authors’ hypothesis that 
specialization emerges not as a consequence of task complexity, but rather as 
a result of the number of behaviors required to solve the task, would require 
several comparative case studies. Such studies would need to test tasks of 
varying degrees of difficulty versus tasks that require numerous complementary 
and potentially specialized behaviors. Such a comprehensive study would 
yield a valuable contribution to ones understanding of the relation between 
heterogeneous and homogenous design approaches, task performance, task 
complexity, and emergent specialization.

Moving in Formation and Cooperative Transportation 
Tasks

Certain collective behavior research endeavors, mainly in the fields of artificial 
life and multi-robot systems, have aimed to model and reproduce various forms 
of social phenomena that are observable in biological systems (Reynolds, 
1987; Zaera, Cliff, & Bruten, 1996). Coordinated movement and cooperative 
transport is sometimes studied within the context of a gathering task, and 
has been studied separately in both physical and simulated environments. 
Cooperative transport is inspired by biological prey retrieval models, which 
present many examples of the value of specialization, such as the pushing vs. 
pulling behaviors exhibited in stigmatic coordination that allows several ants 
to transport a large prey (Kube et al., 1999). Such inspiration was used by the 
research of Dorigo et al. (2004) and Nolfi, Baldassarre, and Parisi (2003a), 
which described the evolution of coordinated motion, and self-assembly in 
a simulated multi-robot system for the purpose of cooperatively transporting 
objects. Similarly, the research of (Nolfi et al., 2003a) described the evolution 
of particular group formations in a simulated multi-robot system, which al-
lowed efficient forms of coordinated group movement across an environment 
towards a light or sound source. The research of Baldassarre, Nolfi, and Parisi 
(2003), Dorigo et al. (2004), and Nolfi et al. (2003a) has been reviewed in 
related work (Nitschke, 2005), and is thus not described here.
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Future Directions

Consequent of the literature reviewed, we deem the most viable future re-
search direction to be the development of structured and principled emergent 
behavior design methodologies. From a broad range of methods that utilize 
emergent specialization for solving collective behavior tasks, a lack of a 
unifying set of design principles (methodologies) that link the workings of 
each of these methods, was highlighted. Such design methodologies would 
provide definitions and measures of specialization, and allow researchers to 
construct collective behavior systems that facilitate desired forms of emergent 
specialization that solve given tasks. If emergent specialization is to be utilized 
as a problem solver in systems that are designed using biologically inspired 
principles such as evolution and learning, then the concept of specialization 
must be defined, so as it can be identified and used in a problem solving 
process. In order to validate design methodologies that identify, measure, 
and harness emergent specialization as a problem solving tool in artificial 
complex adaptive systems, several considerations must be made.

1. Given the disparate and disjoint nature of biologically inspired and col-
lective behavior research, validation of emergent specialization design 
methodologies would be experimental, and not necessarily constructed 
from a set of mathematical or otherwise theoretical suppositions that 
are proved.

2. Such methodologies would need to encapsulate the various types of 
specialization that benefit particular types of collective behavior tasks. 
These types would be identified through extensive experimentation.

3. Such methodologies would need to use specialization that can be iden-
tified and categorized, either dynamically by the design method, or a 
priori by a human designer. Importantly, dynamic identification of the 
type and degree of specialization required for a given task by a method 
would greatly increase the applicability of the method. That is, such 
a method would by applicable to complex task environments where 
specific task challenges dynamically arise in the environment and the 
exact nature of tasks cannot be described ahead of time.

Hence, if emergent specialized behavior is to be used as a means of deriv-
ing solutions to complex and dynamic task challenges in both simulated and 
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physical collective behavior systems8 then future research is obliged to look 
towards addressing the considerations delineated herein.

Conclusion

In drawing conclusions for this chapter, it is important to note that the chapter’s 
goal was not to present an exhaustive list of research relating to emergent 
specialization, but rather to identify and present a set of pertinent research 
examples that use biologically inspired design approaches for the purpose of 
facilitating emergent behavioral specialization. Such research examples were 
selected based upon results that indicated emergent behavioral specialization 
as being beneficial for solving collective behavior tasks.
The binding theme of the chapter argued, that the majority of collective 
behavior research is currently analyzed and evaluated from empirical data 
gathered and emergent behavioral specialization observed, without analytical 
methods for identifying the means and causes of emergent specialization. An 
obvious reason for this is that the use of biologically inspired concepts such 
as evolution, self-organization, and learning as design methods is still in a 
phase of research infancy. Consequently, emergent specialization derived 
using such biologically inspired design concepts is currently constrained 
to simple forms. Given this general evaluation of prevalent literature, we 
identified several unresolved issues that inhibit the development of biologi-
cally inspired design methodologies that synthesize emergent specialization 
in solving collective behavior tasks.

1. It was evident that many researchers deem the simulation of collective 
behavior systems to be an effective approach for investigating emergent 
behavioral specialization, given that simulations provide a convenient 
means for studying the conditions under which specialization emerges. 
For example, the effects of parametric changes can be observed in a 
relatively short space of time. However, with notable exceptions, such 
as SwarmBots (Dorigo et al., 2004), the identification and transference 
of mechanisms motivating emergent specialization observed in simula-
tion to counter-part algorithms operating in physical collective behavior 
systems such as multi-robot systems, is not yet plausible. In the case of 
SwarmBots (Dorigo et al., 2004), a simple task environment made the 
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transference to a physical environment possible, and emergent special-
ization was not necessarily a problem solver for dynamic challenges in 
the environment, but rather a solution to a given task that was emergent 
but not necessarily desired.

2. In the pertinent research examples reviewed, the complete potential 
of biologically inspired design, and the advantages of emergent spe-
cialization were not always effectively exploited. For example, many 
collective behavior systems, with notable exceptions such as division 
of labor methods applied to optimization tasks (Bonabeau et al., 1997), 
were simply attempting to synthesize emergent specialization, or to 
demonstrate the veracity of concepts such as self-organization, learn-
ing, and evolution for deriving novel agent behaviors. Such concepts 
were rarely applied to methods that derived emergent specialization as 
a means of increasing task performance or accomplishing unforeseen 
challenges in collective behavior tasks.

3. There is currently no standardized benchmark or research test-bed for 
testing, interpreting, evaluating, and classifying emergent specialized 
behavior. RoboCup was included as an honorable mention in the chap-
ter, given that it provides an effective platform for testing and evaluat-
ing various forms of collective and individual behavior, emergent or 
otherwise, implemented either within an agent simulator or a physical 
multi-robot system. That is, collective behavior is simply evaluated 
within a competitive game scenario, so collective behavior performance 
is determined according to the evaluation criteria of the game. Another 
exception is collective gathering and dynamic scheduling in distributed 
systems, which can be represented as optimization tasks. In this case, 
standardized benchmarks exist in the form of performance results yielded 
by classical adaptive approaches. This makes the results of biologically 
inspired and classical methods to such tasks comparable. However, with 
exceptions such as Bonabeau et al. (1997) and Theraulaz and Bonabeau 
(1995) many optimization tasks do not benefit from the use of emergent 
behavioral specialization. Thus, the testing, interpretation, and evalua-
tion of emergent specialized behavior within the context of collective 
behavior systems, is currently conducted according to the performance 
benchmarks of the researcher’s own experimental simulation platform. 
This means that the experimental results can only be compared within 
the context of their own simulation environment. The development of 
emergent specialization design methodologies that could be equally ap-
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plied to physical collective behavior systems would remove this critical 
constraint.

Given these open research issues, one may conclude that if the notion of 
emergent specialization as a problem solver for collective behavior tasks is 
to gain any maturity and credibility, then collective behavior systems must 
be built upon proven emergent specialization design methodologies. Ideally, 
such methodologies must be proven for convergence to desired forms of 
collective behavior (achieved as a consequence of emergent specialization), 
scalable and transferable to a counterpart situated and embodied collective 
behavior task environments.
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Endnotes

1  Examples of complex adaptive systems include social insect colonies, biologi-
cal neural networks, traffic jams, economies of a nation, as well as industrial 
infrastructures such as energy and telecommunications networks (Resnick, 
1997). We deem complex adaptive systems to be a subset of complex systems 
where autonomous software (simulated) or physically embodied (robots) agents 
operate in order to solve a given task.

2 The terms task, activity, role, and caste are defined as follows. Task: what has to 
be done; Activity: what is being done; Role: the task assigned to an individual 
within a set of responsibilities given to a group of individuals; Caste: a group 
of individuals specialized in the same role (Kreiger et al., 2000).

3  The terms collective behavior system and artificial complex adaptive system 
are used interchangeably throughout the chapter. Both refer to distributed 
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systems where specialization emerges as a property of a collective behavior 
dynamics.

4  We distinguish methodologies from methods. We assume the latter to be the 
actual algorithm, which is implemented for the purpose of solving a specific 
task. Where as, we assume the former to be a set of design principles for de-
signing methods.

5  Various definitions for numerous types of specialization have been proposed 
across a broad range of disciplines. In The Wealth of Nations, (Smith, 1904) 
Adam Smith described economic specialization in terms of division of labor. 
Specifically stating that in industrialism, division of labor represents a quali-
tative increase in productivity, and regarded its emergence as the result of a 
dynamic engine of economic progress. Smith viewed specialization by work-
ers as leading to greater skill and greater productivity for given tasks, which 
could not be achieved by non-specialized workers attempting to accomplish 
those same tasks.

6  The allocation of agent labor within a group of agents is analogous to resource 
allocation which derives from economic and game theory studies (Axelrod, 
1984). Such studies attempt to derive methods that efficiently allocate a limited 
amount of resources so as to accomplish a given task with the highest degree 
of performance possible.

7  Heterogeneity, and hence behavioral diversity, was defined as the number 
of castes in the group, and specialization was the part of diversity that was 
required to increase task performance.

8  Such a case has been envisioned for swarm robotic systems (Beni, 2004).



254   Nitschke, Schut, & Eiben

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission        
of IGI Global is prohibited.

Section IV

Social Science
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